Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Int J Environ Res Public Health ; 19(16)2022 08 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1987754

RESUMEN

Awareness of indoor air quality (IAQ) in crowded places such as schools and offices has increased since 2020 due to the COVID-19 pandemic. In addition, countries' shifting away from containment and towards living with COVID-19 is expected to increase demand for risk mitigation via air-purification devices. In this work, we use Computational Fluid Dynamics (CFD) analysis to investigate the impact of adding an air-purification technology on airflow in an enclosed space. We model a Polyester Filter and UV light (PFUV) dehumidifier in an office with two occupants: one infected with an airborne infectious disease, such as COVID-19; and the other uninfected. We compare three cases where the infected occupant coughs: with no device, and with the device at two different orientations. We construct a CFD model using ANSYS® 2021 Fluent and the Discrete Phase Model (DPM) for the particle treatment. Thermal comfort is assessed using the Testo 400 IAQ and comfort kit. We find that both the device operation and the placement alter the airflow contours, significantly reducing the potential for the uninfected occupant to inhale the vapour expelled by the infected occupant, potentially impacting the likelihood of disease transmission. The device improved thermal comfort measured by Predicted Mean Vote (PMV), Predicted Percentage Dissatisfied (PPD).


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Tos , Humanos , Hidrodinámica , Pandemias
2.
Machines ; 9(7):138, 2021.
Artículo en Inglés | ProQuest Central | ID: covidwho-1323291

RESUMEN

The shift towards remote access and control of equipment has become more prominent, especially due to COVID-19 lockdowns. Access to physical/real equipment for practical learning remains important for engineering studies. Thus, this paper presents an approach for remotely accessing and controlling automation equipment for engineering practical activities. Specifically, it addresses the issue of accessing and controlling machines for programmable logic controller (PLC) programming tasks. The combination of a scheduler, remote desktop access, graphical user interface, and a micro-controller allows students to work remotely on practical equipment. The lab computer can be accessed via a remote computer to select one of multiple equipment for practical activities. A prototype system was constructed as proof of concept. The prototype system functions as required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA